W elcome to
Fintronic USA

redball.gif (326 bytes)About Fintronic USA

redball.gif (326 bytes)Main announcements

redball.gif (326 bytes)What's new at Fintronic

redball.gif (326 bytes)What our customers are saying...

redball.gif (326 bytes)Support for SystemC

redball.gif (326 bytes)Support for Verilog 2001

redball.gif (326 bytes)Third party tools integrated with FinSim(Specman, Denali, Debussy, Undertow, Vera, VirSim, HDL Score, Comet, Meteor, NelSim, Pivot, DeskPOD, @Designer 2.1)

home.htmlProductsSupportEvaluateContact

Finding eigen values and corresponding eigen vectors in Verilog


This example works on FinSim 10_05_92 and subsequent versions.

This example shows how to find the eigen values and eigen vectors of a matrix and how to test that indeed they are correct eigenvectors corresponding to given eigen values.

module top;
`include 
   parameter size = 3;
   real p[0:size];
   VpFCartesian eval[0:size-1], evct[0:size-1][0:size-1];
   VpFCartesian A[0:size-1][0:size-1], I[0:size-1][0:size-1], LI[0:size-1][0:size-1];
   integer i, j, k, r;
   VpFCartesian B[0:size-1][0:size-1];
   VpFCartesian P[0:size-1][0:0];
   real norm;
   view VpFCartesian evctk[0:size-1][0:0] as evct[$I1][k];
   VpFCartesian l;

   initial begin
    /* initialize matrix A */
    A[0][0].Re = 1;
    A[0][0].Im = 1;
    A[0][1].Re = -1;
    A[0][1].Im = -1;
    A[0][2].Re = 2;
    A[0][2].Im = 2;

    A[1][0].Re = 0;
    A[1][0].Im = 0;
    A[1][1].Re = 0;
    A[1][1].Im = 1;
    A[1][2].Re = 2;
    A[1][2].Im = 0;

    A[2][0].Re = 0;
    A[2][0].Im = 0;
    A[2][1].Re = -1;
    A[2][1].Im = 0;
    A[2][2].Re = 3;
    A[2][2].Im = 1;

    $PrintM(A, "%e");

   /* compute eigenvalues and eigenvectors of matrix A */
   eval = $Eig(A, evct);
   $PrintM(eval, "%e");
   $PrintM(evct, "%e");

   /* check correctness */
   $InitM(I, ($I1 == $I2) ? 1 : 0, 0);
   k = 0;
   i = 0;
   while (i < size) begin
//   get next distinct root
     if (i < (size-1)) begin
      while (($VpAbs(eval[i].Re-eval[i+1].Re) < 0.0000001) && 
             ($VpAbs(eval[i].Im-eval[i+1].Im) < 0.0000001)) begin
         i = i + 1;
       end
     end

     l = eval[i];
     $display("\n\nTesting root %d: Re=%e Im=%e\n", i, l.Re, l.Im);
     LI = l*I;
     B = A - LI;
     r = $Rank(B);
     $display("Rank(B) = %d\n", r);

//   check each eigenvalue against its corresponding eigenvectors
     $display("There are %d eigenvectors\n", size-r);
     for (j = 0; j < size-r; j++) begin
       P = B*evctk;
       norm = $VpNormAbsMax(P);
       if (norm > 0.0001) $display("ERROR: for evect %d norm is %e\n", k, norm);
       else  $display("OK: for evect %d norm is %e\n", k, norm);
       k = k + 1;
     end
     i = i + 1;
   end
   $display("Test completed\n");
   end
endmodule // top


© Copyright 1999-2021, Fintronic USA, Inc.   All rights reserved.